

Performance of Water Flow Velocity Calibration Facility

Heming Hu huhm@nim.ac.cn

2019-6-27, Lisbon

Outline

DApplication of current meters

Methodology to calibrate current meter

NIM small tow tank and initial test

Commonly used current meters

Heming Hu, huhm@nim.ac.cn National Institute of Metrology, China

Velocity-area method to calibrate flowrate onsite

- \Box Velocity-area method : velocity sampling \rightarrow flow rate calculation
- Methodology to calculate averaged velocity by limited points of sampling velocities

Outline

□ Application of current meters

DMethodology to calibrate current meter

NIM small tow tank and initial test

Methodology: flow velocity calibration facilities

NIM low wind speed facility (tow speed)

NIM wind tunnel (LDV as standard)

VNIIM water tunnel (pitot-tube)

USGS Submerged jet tank (pitot-tube)

Tow tank facilities in the world

Organization	dimension (m)	Speed (m/s)	Driven method	remarks	
	24.4×1.2×1.2	0.03~0.91	/	Acoustic test	
0363, 03	137×3.7×3.7	0.015~5.5	wheel-driven	/	
METAS, Swiss	140×4×2.4	0.02~10.0	wheel-driven	uncertainty: 0.04%+2mm/s	
BAW-IWB, Austria	40×2.25×2.0	0.02~3.4	Tow at one end	Uncertainty: 2mm/s	
NIWA, New Zealand	50×1.85×1.75	()~3.3	wheel-driven	/	
OTT, Germany	50×2.9×2.1	0.05~10.0	Tow at one end	/	

BAW-IWB

NIWA

USGS

METAS

Tow tank facilities in China

Chongqing, $(50 \times 1.7 \times 1.7)$ m

Weifang, $(100 \times 2.5 \times 2)$ m

Nanjing, $(135 \times 3 \times 3)$ m

Shanghai Heming Hu, huhm@nim.ac.cn National Institute of Metrology, China

Driving method of tow tank

- □ Wheel-driven cart
 - Motor on cart, slide wire
 - Heavy cart to keep stable running
 - Suitable to long enough tank
- □ Tow cart
 - Motor at one end, simple wire connection
 - Higher acceleration and deceleration
 - Higher maximum speed or longer test time period for same tank length

Measurement of cart speed

- □ Speedometer, wheel with encoder , need to be calibrated dynamically
- □ Triggers with known distances and pulse timer
 - > Multi triggers & single photoelectric switch (METAS, BAW)
 - Two triggers & multi photoelectric switch (OTT)
- □ Synchronization of tow speed & velocimetry
 - decimal part of pulse number

Outline

□ Application of current meters

Methodology to calibrate current meter

DNIM small tow tank and initial test

NIM small tank: 8m*1.2m*1.2m

- **D** Calibration of current meter
 - > Mechanical propeller, magnetic, doppler, transit-time, ...
 - ➤ Tow method
 - Dynamic method with LDV as standard
- **D** Test of open channel flow meter
 - ➤ doppler
 - ➤ transit-time

Cart speed measurement system

- Triggers with known distances and pulse timer
- Distances of triggers
 - ➤ ~300mm * 24
 - Calibrated by Interferometer, 30um

Interval calibration of triggers at different speeds

11

Heming Hu, huhm@nim.ac.cn National Institute of Metrology, China

Different kind of current meters tested

Sontek MicroADV

- □ Three-axis velocity measurement
- □ Sampling Rate: 0.1~50 Hz
- □ Sampling Volume: 0.09 cc
- Distance to Sampling Volume: 5 cm
- **D** Resolution: 0.01 cm/s
- Programmed Velocity Range: 3/10/30/100/250 cm/s
- □ Accuracy: 1% of measured velocity, 0.25 cm/s
- Maximum Depth: 60 m
- □ Temperature Sensor: 0.1°C

MicroADV test result

Nominal speed (m·s ⁻¹)	Indicat	ion error	Repeatability			
	Absolute	Relative	Absolute	Relative		
	$(\mathbf{mm} \cdot \mathbf{s}^{-1})$	(%)	$(\mathbf{mm} \cdot \mathbf{s}^{-1})$	(%)		
0.01	0.8	7.4	0.3	2.3		
0.03	1.1	3.4	0.6	1.8		
0.05	0.7	1.3	0.3	0.5		
0.1	-0.2	-0.2	0.4	0.4		
0.3	-1.7	-0.6	0.7	0.2		
1	5.1	0.5	2.0	0.2		

Heming Hu, huhm@nim.ac.cn National Institute of Metrology, China

Mechanical Current meter test result

a(m) = v(m/s) / n(/s)

a: running distance per rotor turnv: velocityn: rotate speed

velocit	y (m/s)	1	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1
distance per rotor circle (mm) rel	average	200.68	200.65	200.73	200.93	201.39	201.82	202.94	204.49	206.99	216.06
	std	0.14	0.04	0.11	0.05	0.05	0.04	0.11	0.08	0.64	2.11
	relative std	0.07%	0.02%	0.06%	0.03%	0.02%	0.02%	0.05%	0.04%	0.31%	0.98%

Outline

Application of current meters

□ Methodology to calibrate current meter

NIM small tow tank and initial test

- NIM small tank facility
- Different current meters tested
 - Mechanical shows good repeatability (<0.1%)
 - > ADV shows good performance at very low velocity
- Calibration for ATT Line averaged velocity
- **D** Background flow observation for still water when towing
- Comparison among different tanks
- **D** Submerged jet with LDV
 - > Jet nozzle
 - Comparison with the two methods

Open channel flowrate measurement

- **D** Pipe flowmeter as reference
- □ Transit-time transducers for open channel
- Open channel flow distribution and flowmeter test

Thanks for your attentions

